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ABSTRACT 

Many controlled queueing systems possess simple index-type 
optimal policies, when discounted, average or finite-time cost 
criteria are considered. This structural results makes the com- 
putation of optimal policies relatively simple. Unfortunately, 
for constrained optimization problems, the index structure of 
the optimal policies is in general not preserved. As a result, 
computing optimal policies for the constrained problem ap- 
pears to be a much more difficult task. We provide a framework 
under which the solution of the constrained optimization prob- 
lem uses the same index policies as the non-constrained prob- 
lem. The method is applicable to the discrete-time IClimov 
system, which is shown to be equivalent to the open bandit 
problem. 

1. INTRODUCTION 

The search for optimal policies in Markov decision pro- 
cesses (MDPs) is usually carried out in two steps. First, one 
shows that an optimal policy can be found in a small subclass of 
the admissible policies, e.g., the subclass of stationary policies. 
Then, one identifies an optimal policy within this subclass. 

Let Jc(a) and Jd(a) be two cost functions, associated with 
one-step cost functions c and d when the system is operated 
under the policy a. We consider the constrained optimiza- 
tion problem (Pv): Minimize J C ( r )  subject to the constraint 
Jd(a) 5 V for some given V .  The first such problem was solved 
for the finite-hdrizon cost by Derman and Klein [8]. Under the 
average cost criterion, the existence of optimal stationary poli- 
cies under multiple constraints was established by Derman and 
Veinott [9], and by Hordijk and Kallenberg [lo], both for finite 
state space S and action space U, including the multi-class 
case. Under a single class assumption and for a single con- 
straint, the existence of optimal stationary policies which are 
randomized at a single state was proved by Beutler and Ross [GI 
for finite S and compact U, and by Sennott [18] for countable 
S and compact U. Borkar [7] has obtained analogous results 
under multiple constraints when S is countable and U is com- 
pact, and has indicated similar results for other cost criteria. 
The multiple constraint case for countable S and countable 
U is treated by Altman and Shwartz [2]. In [3], Altman and 
Shwartz prove the existence of optimal policies for finite S and 
U under the discounted and other cost criteria, under multi- 
ple constraints; they also present computational algorithms for 
these optimal policies. 
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Unfortunately, except for the finite case and the specific 
example in [l], there are no efficient methods for the computa- 
tion of optimal policies. In this note we identify some structural 
properties which simplify this computation considerably by re- 
ducing it to a finite number of policies and to the evaluation 
of a single parameter in the interval [0,1]. We show that these 
structural assumptions hold, for example, for open bandit pro- 
cesses [12,20,21] and for a single-server network of queues. We 
deal in particular with the finite, discounted and the average 
cost criteria. 

In Section 2 the general model is introduced. In Section 
3 an axiomatic formulation is given, under which constrained- 
optimal policies retain the index structure. The assumptions 
of Section 3 are then verified in Section 4 for the cases of finite, 
discounted and average cost criteria. In Section 5 an equiva- 
lence between the discrete-time Klimov problem [ll]  and arm- 
acquiring bandits [20] is established; these systems are then 
shown to fall into the present framework. 

A few words on the notation and conventions used in this 
paper: For any set E endowed with a topology, measurability 
always means Borel measurability and the corresponding Borel 
u-field, i.e., the smallest a-field on E generated by the open 
sets of the topology, i s n o t e d  by B(E).  Unless otherwise 
stated, limn, limn and limn are taken with n going to infinity. 
Moreover, the infimum over an empty set is taken to be 00 by 
convent ion. 

2. THE GENERAL MODEL 

To set up the discussion, we start with a MDP (S, U, P) 
as defined in the literature [16, 17, 211. The state space S 
and the action space U are assumed to be Polish spaces; the 
one-step transition mechanism P is defined through a fam- 
ily (Q(z, U ;  dy)) of measurable transition kernels. The state 
process { X t ,  t = 0,1,. . .} and the control process {Ut ,  t = 
0,1,. . .} are defined on some measurable space (a, F) (which 
for sake of concreteness is taken to be the canonical space S x 
(U x S)"O). The feedback information available to the decision- 
maker is encoded through the random variables (rvs) {Ht, t = 
0,1,. . .} defined by HO = X O  and by Ht = ( X O ,  U,, XI,. . ., 
Ut-', X t )  for all t = 1,2,. . .. The rvs X t ,  Ut and Ht take values 
in S, U and Mt = S x (U x S)', respectively, for all t = 0,1,. . ., 
and the information a-field Ft is defined by Ft = u { H t } .  

The space of probability measures on (U, B(U)) is denoted 
by IM(U). An admissible control policy ?r is defined as any 
collection {at, t = O , 1 , .  . .} of mappings at : Ht + M(U) 
such that for all t = 0, 1, . . . and every Borel subset B of U, 
the mapping I H t  + [0,1] : hl + nt(ht; B )  is Borel measurable. 
The collection of all such admissible policies is denoted by P. 

Let p be a given probability measure on (S,B(S)).  The 
definition of the MDP (S, U, P) then postulates the existence 
of a collection of probability measures {P", a E P} on ( 0 , F )  
such that conditions (2.1)-(2.2) below are satisfied: For ev- 
ery admissible policy a in P, the probability measure P" is 
constructed so that under p", the rv X O  has probability dis- 
tribution p,  the control actions are selected according to 

A A 

A 

P"[Ut E BJ 3 6 1  = at(&; B), B E B ( U )  

t = O , l ,  ...( 2.1) 



and the state transitions are realized according to 

P"[Xt+1 E AI Ft V g { u t } ]  = Q ( X t ,  Ut;  A ) ,  A E B(S) .  

t = 0,1,. . . (2.2) 
The expectation operator associated with p" is denoted by 
E". 

Following standard usage, a policy ir in P is said to be 
a Markov policy if there exists a family { g t ,  t = 0,1,. . .} of 
Borel mappings g t  : S + lM(U) such that x t ( . ; H t )  = g t ( . ; X t )  
P"-a.s. for all t = 0,1, .  . .. In the event the mappings { g t ,  t = 
0,1,. . .} are all identical to a given mapping g : S -+ IM(U), 
the Markov policy is termed stationary and is identified with 
the mapping g itself. 

3. A GENERAL CONSTRAINED MDP 

We interpret any Borel mapping c : S x U -+ R as a one- 
step cost function. In order to avoid unnecessary technicalities 
we always assume c to be bounded below. In fact, as will 
be apparent from the discussion, there is no loss of generality 
in assuming c 2 0, as we do from now on. For any policy 
?r in P ,  we define Jc(n) as the total cost (associated with c )  
for operating the system under policy x .  Several choices are 
possible and include the long-run average cost 

and the finite-horizon @-discounted cost 

Jc(n)  e E" [ e p s c ( X s , U s ) ]  , 0 < /3 6 1, T = 1,2,. . . . 

The definitions (3.1)-(3.3) are all well posed under the non- 
negativity assumption on c. 

Now, we consider two Borel mappings c ,  d : S x U -+ Et+ 
and for some scalar V ,  we set 

s=O 

(3.3) 

The corresponding constrained optimization problem (Pv) is 
now formulated as 

(Pv) : Minimize Jc( . )  over Pv. 

Implicit in this formulation is the fact that the cost criteria 
Jc( . )  and J d ( . )  are of the same type. 

For every 0 in [0,1], we define the mapping ce : S x U + 

R+ by 

We simplify the notation by using J e ( x )  to denote the total 
cost associated with cg under policy x ,  whence Je(x )  = J J x )  
for 8 = 1 and J g ( ? r )  = Jd(A) for 8 = 0. The discussion is given 
under the following general assumptions (Al) ,  where 

( A l )  There exists a finite number of Markov stationary 
policies 91,. . . , g L  such that 

the infinite-horizon @-discounted cost 
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(A1.a) For each e = 1,. . . , L ,  the mapping 8 -+ 
Je(gc) is continuous on [0,1]; and 
(A1.b) The condition 

A inf J e ( x )  = min J e ( g 1 )  = J*(8 ) ,  
"EP l < t < L  

8 E [O, 11. 

(3.6) 
holds true. 

It is plain that under (Al) ,  the mapping 8 -+ J*(e )  is con- 
tinuous on [0,1]. As in [l], we call the problem of minimizing 
J e ( . )  over the unconstrained set of policies P the Lagrangian 
problem. We define 

N(B)  5 { e  E {l,. . . , L }  : Je(g t )  = J * ( 8 ) } ,  e E [0,1]. (3.7) 

Using ( A l )  we readily obtain the following properties: For 
each 6 in [0,1], the index set N ( 8 )  is always non-empty by 
virtue of (Al.b),  and for each in N(B),  

Furthermore, if N ( 8 )  reduces to a singleton, then N ( 6 )  = N ( 8 )  
in some open neighborhood of 6. 

To proceed, we set 

A 
746) = min{n E N ( 8 )  : Jd(gn) = f E N ( 8 )  min J d ( g C ) } ,  e E [0,1]. 

If Jo(gn(o)) = Jd(gn(0)) > V, then the problem (Pv)  is not 
feasible and therefore possesses no solution. 

(3.9) 

Assuming feasibility from now on, we set 

(3.10) 

If 8* = 0, then necessarily Jd(gn(0)) 5 V ,  but we may have to 
entertain the possibility that 

8' 5 SUP{@ E [o, 11 : J d ( g n ( 0 ) )  5 v}. 

min{Jc(ge) : 1 6 e 5 L,  J d ( g f )  I V} > J c ( x )  

since the Lagrangian problem may not provide enough infor- 
mation. 

If 8* = 1, then (Pv) has a solution: Indeed, let 8; t 1 in 
(0,1] so that J d ( g n ( @ , . ) )  5 V for all i = 1,2, .  . . by the definition 
of 8*. A converging subsequence, say 8j 1, can always be 
selected so that n(6j) -+ n* for some n* in (1,. . . , L } .  In fact, 
we can assert n(8,) = n' whenever j 2 j *  for some j * .  It 
is plain that n* is an element of N ( 8 j )  for j 2 j * ,  whence 
J* , (gn- )  = J'(8j). The continuity of 8 -+ J * ( e )  implies that 
n* is an element of N(1), and since Jd(gn*) 5 V, we conclude 
that the policy gn* solves (Pv). 

From now on, assume 0 < 6' < 1. Let 0; 1 8' in ( 0 , l )  and 
denote by T i  an accumulation point of the sequence {n(8,), i = 
1,2, .  . .}. Similarly, let 8, t 0' in ( 0 , l )  and denote by E an ac- 
cumulationpoint of {.(e,), j = 1,2, .  . .} such that Jd(gn(e j ) )  5 
V ;  if Jd(g , (p ) )  5 V ,  we set 6'j = 8* for all j = 1,2 ,..., in 
which case n(8j) = .(e*) = E. Again, we have n(&) = si and 
n(0j )  = n for all i and j large enough. By (Al.a),  we see that 
both ii and E are elements of N(B*), so that the equalities 

(3.11) Je-(g,) = Je*(gii) = J * ( @ * )  

must hold. Moreover, it is plain that 

(3.12) J d ( g r t )  6 v 5 Jd(g7i). 



The first inequality follows by construction and (Al.a),  
whereas the second inequality results from the construction 

and { g q ,  0 5 17 5 l}, as 

and (3.9)-(3.10). 
Next, we define the policies g,  

the Markov stationary policies given by 

(3.13) 

and 
g9 'Is+ (1 - rl)Ii ,  rl E [O, 11. (3.14) 

Then gv is the simple randomization between the two policies g 
and ?j with randomization bias pl.  The identities (3.11)-(3.12] 
now take the form 

JO*(s) = J@*(g)  = J*(e*)  (3.15) 

and 
J d ( s )  5 v 5 J d ( g ) .  

At this point, we can introduce the condition (A2). 

(A2) The mapping 71 -+ Jd(gq) is continuous on [0,1]. 

(3.16) 

Lemma 1. Under (Al)-(A2), the equation 

has a solution q*. 

Proof. This is immediate from the fact that the mapping 
r) + Jd(g' )  is continuous on [0,1] and from the inequality 
(3.16) which can written as 

Jd(gl) 5 v 5 Jd(go). (3.18) 

We further assume that conditions (A3)-(A5) are en- 
forced, where 

(A3) The equality 

Je*(g')  = Je*(g)  , 9 E [O ,  11 (3.19) 

holds; 

(A4) The equality 

holds; and 

(A5) For every admissible policy .?r in P, the inequality 

J@*(T) 5 e*&(.) + (1 - e * ) J d ( T )  (3.21) 

holds. 

Theorem 2. Under (Al)-(A5), the policy g'J* [where q* 
is a solution of (3.1 7)) solves the constrained problem (Pv) 
provided 8' > 0. 

Proof. We first note that 

J*(e*)  = J&") (3.22) 
(3.23) = 6*Jc(g") + (1 - O*)Jd(gv*) 

where (3.22) follows from (3.15) and (A3), whereas (3.23) is 
validated by (A4). On the other hand, we have 

JO*(T) L J*(e*) ,  E P (3.24) 

Je*(n)  5 S*Jc(T) + (1 - e * ) J d ( T ) ,  T E P (3.25) 

by invoking (A5). By Lemma 1, the policy 99' is an element 
of PV since J d ( g q * )  = V by construction, and upon combining 
(3.22)-(3.25), we get 

by virtue of (Al.b),  and 

for all T in P. It is now plain from (3.26) that 

e*Jc(gqj 5 ~ * J , ( T ) ,  T E P, (3.27) 

and the result follows since 8* > 0. 

Theorem 2 and its proof remain unchanged if (A2) is re- 

(A2bis) There exists a solution to equation (3.17), 
and if, in addition, (3.19) is assumed to hold only for = q*. 
However, (A2)-(A3) seem more natural and hold under weak 
conditions, as established in Section 4. 

We conclude this section by noting that the Markovian 
properties and the specific structure of the cost criterion are 
not used in the proof of Theorem 2, in that the discussion 
applies to any optimization problem which satisfies conditions 
(Al)-(A5). The only point which requires special care is the 
construction of an "interpolated" policy (3.14). 

4. THE ASSUMPTIONS 

placed by the conclusion of Lemma 1, namely that 

In this section we discuss the assumptions (Al)-(A5); we 
give concrete and verifiable conditions for several cost criteria. 
A specific model is analyzed in Section 5. 

We focus on three cost criteria, namely the finite-time p- 
discounted cost criterion (3.3), its infinite-horizon counterpart 
(3.2) and the long-run average cost criterion (3.1), with the 
understanding that the discussion and methods apply, mutatis 
mutandis, to other situations as well. However, for the sake of 
brevity, we shall not elaborate in that direction. 

The  finite-time cost criterion - Condition (A2) holds if 
the costs are bounded since then the costs are polynomial in 
7. More generally, the same argument establishes (A2) if the 
costs are merely bounded from below (or from above). 

Assumption (A3) holds if (3.6) is valid for all initial con- 
ditions, since then a backward-induction argument shows that 
for each r) in [0,1], gq is optimal for the Lagrangian prob- 
lems. Finally, (A4)-(A5) are always valid since under the 
non-negativity assumption on c and d, the equality 

JO(T) = e J c ( T )  + (1 - e ) J d ( T ) ,  0 E [o, 11 (4.1) 

holds for every admissible policy T in P. Condition (A1.a) 
immediately follows. 

The  discounted cost criterion - Condition (A2) holds if 
the costs we bounded since then the total discounted cost can 
be approximated by a finite number of terms in (3.2), and the 
argument for the finite case applies. More generally, under 
the same conditions as for the finite cost, the same argument 
applies provided a finite approximation is valid. This is the 
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case if the tail of the infinite sum is bounded for 71 in (0,1]. 
This condition holds for all but the most pathological systems. 

Assumption (A3) holds under rather weak conditions. For 
example, suppose the action space to be compact and the costs 
bounded above. Assume further that for each I in S, the map- 
pings U + C(I;U) and U + d(r;u) are lower-semi continuous 
and that the transition kernel Q(I; .; dy) is continuous. Then 
any policy with actions in the optimal set (determined through 
the dynamic programming equation) is optimal for the La- 
grange problem [17]. This implies that (3.19) holds whenever 
(3.6) is valid for each initial condition. Note that in this case 
boundedness from above replaces boundedness from below. 

Finally, (A4)-(A5) always hold since, as in the finite 
case, (4.1) holds, and condition (A1.a) immediately follows. 

T h e  long-run average cost criterion - Condition (A2) was 
established when the state space S is finite in [13], and for the 
queueing system discussed in the next section [15]. A general 
method for verifying (A2) is available in [19]. In particular, 
this condition holds whenever the Markov chain is ergodic un- 
der both g and 3, provided the costs are integrable under the 
resulting & w i a n t  measures [13]. 

Condition (A3) can be established using dynamic pro- 
gramming arguments, as in the case of the discounted cost, 
although the requisite conditions are more stringent [17,21]. 
For some systems (such as the one described in Section 5), 
(A3) can be established by direct arguments [5,15]. 

Finally, we observe that for every admissible policy K in 
P, the inequalities 

r -  t 1 

= e ~ ~ ( . )  + (1 - e)Jd(.), 0 E [o, 11 (4.2) 

always hold, SO that condition (A5) is always satisfied. The 
validity of (A4) is more delicate to establish. In [19], the 
authors give conditions under which the long-run average cost 
criterion (3.1) is obtained as a limit under stationary policies. 
Under these conditions, (A4) holds, and (A1.a) follows. 

5. BANDITS A N D  QUEUES 

The purpose of this section is to show the equivalence 
between the discrete-time Klimov problem [11,14] and arm- 
acquiring bandit processes [20]. Continuous-time versions of 
this result are in [12,21]. Since both systems were discussed 
in detail elsewhere, we shall give only short, informal descrip- 
tions. Throughout this section, the rv [ and the i.i.d. sequence 
{A(t), t = 0,1, .  . .} take their values in W". We introduce the 
finiteness assumption 

Arm-acquiring bandits 

The formulation in this section is given in the terminol- 
ogy of queueing systems, in order to facilitate the comparison: 
Customers of type 1,2, .  . . , N arrive into the system. A cus- 
tomer of type n can be in one of the states {1 ,2 , .  . . ,Sn}. It is 
convenient to lump together customers sharing both type and 
state [20]; we shall say that a customer of type n in state s, 
s = 1,. . . , S,, resides in queue k, where 

n-1 

k = x S J + s  
J = l  

and we set I( = S,. With this convention, the number 
of customers initially in the system is (, and new customers 
arrive to the queues according to the arrival process {A(t), t = 
0,1 , .  . .}. At most one customer can be served at a time. If a 
customer from queue k is served at time slot t ,  then at the end 
of the slot, with probability pk( this customer moves to queue 
I ,  k,e = 1,. . . ,I<. All other customers do not change state- 
in other words, they remain at their queues. It is clear that 
the vector I in IN", where x k  is the number of customers in 
queue k, serves as a state for this MDP provided arrival, service 
completion and routing processes are mutually independent. 
The action U = k is interpreted as service of queue k, U = 0 as 
idle server, with the provision that xk = 0 implies U # k, k = 
1,2 , .  . . , I<. If a customer in queue k is served, then reward r(k) 
is obtained. The reward to be maximized is of the discounted 
type (3.2), and takes the form 

r m  1 

Ls=o I 
which is well defined since T is bounded. 

The classical description of the arm-acquiring bandits re- 
quires Cppr ,p  = 1 for each k = 1,. . . , IC. However, this restric- 
tion is a purely semantic one since the effect of departures from 
the system can always be captured through the introduction 
of an absorbing queue with small (negative) Ieward for service, 
so that it is never served. 

The  discrete-time Kliiiiov problem 

Customers of type 1 , 2 , .  . . ,IC arrive to their respective 
queues according to the arrival process {A( t ) ,  t = 0,1 , .  . .}. 
The number of customers present at time t = 0 is given by 
E .  The server can attend at most one queue at a time. If the 
server attends a non-empty queue, say queue k, k = 1,. . . ,IC, 
during time slot t ,  then at the end of the slot 

e One customer leaves that queue with probability pk and, 
with probability 1 - p k  no customer leaves that queue. 

e If a customer left queue I C ,  then with probability ljke it 
joins queue I ,  e = 1, ..., I<. It leaves the system with 
probability 1 - f i k p .  

A A 
For k, I = 1,. . . , IC, we set pke = pkljke for e # k and p k k  = 

1 - pk(1 - l j k k ) .  Using this transformation, the values of are 
henceforth taken to be 1. Clearly, if arrival, service completion 
and routing processes are assumed mutually independent, the 
dynamics of this system are identical to the dynamics of the 
corresponding arm-acquiring bandit system. 

The state of this system is again the vector z in N" where 
X k  denotes the number of customers in queue k, k = 1,. . . ,I<. 
The cost for the IClimov problem is defined by 
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for some constants cl,. . . , CK (which are usually assumed non- 
negative). The objective is to minimize the discounted cost 
associated with this one-step cost, viz., 

Following the cost-transformation of [4, 51 it is straightforward 
to derive the identity 

Jc(T) = - + ~ c ( X )  - -JE(a) P (5.2) 1 - P  (1-PI2 1 - P  

where A = (AI,. . . , AK)’ and the one-step cost E is defined by 

K 
A E(x ,u )  = 1 [ ~  = k]Ek 

k=l  

with 

and action U is defined as in the bandit problem. As a result, 
for each fixed P in (0, l), we have 

argminJ,(n) = argmax Jz(a) . (5.4) 

Observe that the cost function c“ depends only on the queue 
being served, and so it is a legitimate cost function for the 
bandit problem. 

The  equivalence, result 

Theorem 3. Any discrete-time Klimov problem defines an 
arm-acquiring bandit system with the same dynamics. Under 
(F), they possess the same optimal policies, with costs related 
by (5.2)-(5.3) (with r(k) = E k ,  k = 1,. . . ,I<). Conversely, 
any arm-acquiring bandit system defines a Klimov problem 
with the same dynamics. Moreover, Under (F), if the vector 
r = (r(1),~(2), . . . ,r(I<))’ is in the range of I - P ,  then the 
cost in the Klimov problem can be defined so as to satisfy the 
transformation (5.2)-(5.3) (with E k  = r ( k ) ,  k = 1,. . . , K )  and 
consequently, the same policies are optimal for both systems. 

The proof follows from the preceding discussion, upon ob- 
serving that if r is in the range of I - P then there is a one-to- 
one mapping between (cl,. . . ,CK)  and ( E l , .  . . ,EK). 

Constrained Optimization 

A 

A 

A 

The best-known class of problems for which the hypothe- 
ses (Al)-(A5) hold is the class of arm-acquiring (or open) 
bandit processes [20] described above. For consistency with 
the notation of Section 3, we let c and d still denote the two 
cost functions (although in this case they are independent of 

Lemma 4. For the arm-acquiring bandit problem under the 
discounted cost criterion, conditions (Al)-(A5) hold. 

Proof. It is well known [20] that the optimal policy for this 
system possesses an index rule structure. Thus an optimal 
policy (for any 0 5 6’ 5 1) chooses only which queue to serve. 
Therefore such a policy is uniquely determined by an ordering 
of the queues, where a queue is served only if queues with 
higher priority are empty. Since there is a finite number IC! 
of such policies, (A1.b) follows. Since the costs are bounded 

and the action space is discrete, the argument in Section 4 now 
establishes the result. 

We call the Klimov problem stable if p = A A ’ ( 1 -  P)e  < 1 
(where e is the element (1,. . . ,1)‘ of NK). A policy is called 
non-idling if xk = 0 implies U # k. 

Lemma 5. Assume (F) and that the Klimovproblem is stable. 
Moreover, let Ck 2 0, k = 1,. . . , IC. (i) If P is diagonal then 
(A1.b) holds, where {ge ,  l = 1,2,. . . , L }  is a collection of 
strict prioritypolicies; (ii) If {ge ,  l = 1,2,. . . , L }  is a collection 
of stationary non-idlingpolicies, then (A1.a) and (A2)-(A5) 
hold. 

Proof. Part (i) is established in [4,5]. Under the conditions 
in (ii), Makowski and Shwartz [14,19] establish (A2), whereas 
(A4) follows from [19]. As discussed in Section 4, (A5) holds, 
and (A1.a) follows from (A4). Finally, under the regularity 
conditions established in [14], standard dynamic programming 
techniques yield (A3). 
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